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A formulation to calculate the coupled response of composite shells with embedded
piezoelectric layers and an enclosed acoustic fluid is presented in this paper. The
methodology consists of three parts: (1) a formulation for the electro-mechanical response
of piezoelectric shells; (2) a formulation for the three-dimensional acoustic response of the
enclosed fluid; and (3) the combination of the formulations (1) and (2) to calculate the
coupled smart structure-acoustic fluid response. A recently developed mixed field laminate
theory is adapted for the analysis of piezoelectric shells. The theory combines the first order
shear theory kinematic assumptions with a layer-wise approximation for the electric
potential. Shell geometry is described in an orthogonal curvilinear co-ordinate system and
general piezoelectric material descriptions and laminate configurations are considered. A
boundary element formulation is developed to calculate the acoustic response of the
enclosed fluid. Quadratic conforming boundary elements are used to discretize the fluid
boundary. Advanced numerical integration techniques are employed to calculate singular
elements in boundary element matrices. The treatment of distributed acoustic sources is
also presented. A formulation to calculate the coupled fluid-structure response is also
developed. Relations between the structural and acoustic variables on the structure-fluid
interface are utilized to generate the coupled system of equations in terms of the kinematic
shell variables and acoustic pressures on the fluid boundary. The convergence of the present
developments is established by studying a circular cylindrical shell with an attached
piezoelectric layer. The coupled response is investigated for various types of mechanical
loads and active voltage patterns.
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1. INTRODUCTION

The application of composite materials with embedded piezoelectric sensors and actuators
for improving the performance, versatility and reliability of aeropropulsion and aerospace
components is receiving growing attention. One such area where the unique properties of
smart piezoelectric structures can be utilized is the active modification of acoustic fields
in fluids enclosed by smart structures, which may result in the reduction of aircraft noise
in the engine or the cabin [1, 2]. Yet, only few attempts to utilize active piezoelectric
structures in noise control have appeared recently, which address the problem of a
three-dimensional rigid enclosure of hexahedral shape with a flexible wall made of
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piezoelectric material [3–5]. Although these studies provide some understanding of
the coupled smart structure-acoustic fluid behavior, they were neither intended nor can
be used for the treatment of realistic engineering problems. In order to successfully
utilize piezoelectric smart structures in noise reduction, the coupled response of the
fluid surrounded by a smart shell structure of arbitrary shape, lamination and general
material properties subjected to a variety of external influences needs to be
formally predicted. To the authors’ best knowledge such capability does not seem to
be presently available. Consequently, the present paper attempts to remedy this void
in current technology by presenting a theoretical formulation and its numerical
implementation for calculating the coupled smart shell structure-acoustic fluid
response.

The coupled smart structure-acoustic fluid analysis consists of three parts: (1) analysis
of layered composite structures of arbitrary shapes that contain embedded piezoelectric
materials; (2) acoustic response of the enclosed fluid; (3) coupling of the fluid and structure
responses. The work in each of these three areas is reviewed in the following paragraphs.
The development of the combined method for the analytical and numerical solution of the
coupled problem is new and is presented herein.

The majority of theories available for analyzing piezoelectric shell structures have used
classical or first order shear kinematic assumptions with equivalent force representations
of induced strain in a piezoelectric laminate [6–9]. Such approaches effectively neglect the
piezoelectric coupling on the structure level. Layer-wise formulations that explicitly define
electric potentials as unknown variables were developed recently by Heyliger et al. [10] and
Tzou and Ye [11]. While these formulations are capable of providing accurate results, they
are essentially three-dimensional techniques leading to a large number of degrees of
freedom in the resulting system of equations. This may result in computationally expensive
analyses when a shell is coupled with the acoustic medium. A so called ‘‘mixed-field’’
piezoelectric shell theory and the corresponding finite element, recently developed by
Saravanos [12], are employed in the present development. The theory combines the first
order shear deformation approximation to model the strain field and a layer-wise
approximation of the electric potentials. A general material description is incorporated
into stress-strain relations, and shells of arbitrary shapes and laminate configurations are
considered. As has been shown in the literature [13], the single-layer theories provide
accurate global responses of the thin and moderately thick composite structures without
interfacial cracks and delaminations. Such an accuracy is sufficient for applications
anticipated for the present developments, such as noise reduction. The model size is
significantly reduced, while the piezoelectric coupling is preserved. The problems
associated with relative dimensions of the elements that may lead either to locking or to
ill-conditioned system matrices are eliminated.

In order to study the effects of the active structure on noise in the acoustic enclosure,
a formulation to calculate the acoustic pressures in the enclosed fluid needs to be
developed. The boundary element method is used in the present study to model the
acoustic response of the fluid, because the unknown variables are introduced only on the
boundary leading to a significantly smaller system of equations. Quadratic conforming
boundary elements are used to discretize the boundary. Advanced numerical integration
schemes [14, 15] are used to calculate weakly singular terms while the strongly singular
terms in the boundary element matrix are calculated indirectly. Two distinct treatments
of distributed acoustic sources are presented. A domain integration technique, similar to
that devised for two-dimensional problems [16], is devised for arbitrary sources, and the
particular integral method [17, 18] is employed for sources prescribed using analytical
expressions.
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A formulation to calculate the coupled fluid-structure response is developed next.
Special attention has been paid in the literature to the coupling of fluid and structural
responses [19–22]. Depending on the desired application, two distinct methodologies were
utilized [21]: the structural variable methodology, where the unknown acoustic pressures
are eliminated to cast the system of equations in terms of structural variables only; and
the fluid variable methodology where the structural variables are eliminated in favor of
acoustic pressures. A different procedure was recently proposed by Rajakumar et al. [23]
where both the fluid and the structural variables are retained in the final systems of
equations. All of the above formulations, however, have assumed that the entire fluid
boundary is in contact with the structure. In this paper, it is assumed that only portions
of the shell surface and the fluid boundary are in contact with each other. Relations
between the structural and acoustic variables on the interface are utilized to generate the
coupled system of equations. Condensation of electric variables is performed and the final
system of equations is written in terms of the kinematic shell variables and acoustic
pressures on the fluid boundary. The coupled response is calculated for (1) mechanical
loadings, (2) applied electrical potentials, and (3) distributed acoustic sources. The
unknown electric potentials are then obtained from shell displacements using the electric
condensation equations. The acoustic pressures in the interior of the fluid domain are
calculated using the corresponding boundary values.

Numerical results are presented for a closed cylindrical ring with a piezoelectric layer.
Convergence studies are performed to validate the formulation for the coupled response.
Additional studies investigate the acoustic pressures in the enclosed fluid induced by
external mechanical loadings and applied electric potentials.

2. MIXED-FIELD LAMINATE THEORY FOR PIEZOELECTRIC SHELLS

The mixed field laminate theory for analyzing composite piezoelectric shells is briefly
reviewed in order to introduce the notation and assumptions used throughout this study.
Additional details may be found in reference [12]. A composite laminated shell, as shown
in Figure 1, is considered. The geometric configuration of the shell is described in a
Cartesian co-ordinate system Oxyz. It is assumed that the position vector of an arbitrary
point within the shell, r= {x y z}T, may be expressed as

r(a, b, g)= ro (a, b)+ gĝ, (1)

where the vector ro (a, b) defines the reference surface Ao , a and b are orthogonal
curvilinear co-ordinates defined on Ao , and g is the third co-ordinate corresponding to the

Figure 1. Curvilinear piezoelectric configuration and co-ordinate systems.
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unit vector g that is orthogonal to the reference surface. The shell consists of a number
of plies that are parallel to the reference surface Ao and are made of piezoelectric or
composite materials with arbitrary fiber orientations. The constitutive relations in each
layer are defined in the curvilinear co-ordinate system O'abg and are given as

{s}=[C]{S}−[e]{E}, {D}=[e]T{S}+[o]{E}, (2a, b)

where {s}T = {saa sbb sgg sbg sga sab} and {S}T = {Saa Sbb Sgg Sbg Sga Sab} are the stress
and strain vectors, respectively; {E}= {Ea Eb Eg} is the vector of electric field;
{D}= {Da Db Dg} is the vector of electric displacements; [C] is the stiffness matrix of the
material; [e] is the matrix of piezoelectric properties; and [o] is the matrix of dielectric
properties. Governing equations are derived using Hamilton’s principle which is written
as [24]

g
t

to

dt gV

[r{du}T{ü}+({dS}T{s}− {dE}T{D})] dV−g
t

to

dt gG

({du}T{t̄}− dfz�) dG=0,

(3)

where V is the shell domain bounded by the contour G; d denotes variation; ( ˙ ) denotes
time differentiation; r is the mass density of the material; {t̄} are prescribed surface
tractions; and w̄ is the prescribed surface charge. The displacement field is approximated
using first-order shear deformation assumptions. The components of the displacement
vector at location r and a time instant t are given as

u(a, b, g, t)= uo(a, b, g, t)+ gca (a, b, t), v(a, b, g, t)= vo(a, b, g, t)+ gcb (a, b, t),

(4a, b)

w(a, b, g, t)=wo(a, b, g, t), (4c)

where superscript o denotes the values on the reference surface Ao , and ca and cb are
rotation angles with respect to axes a and b. The components of the strain vector {S} are
given in reference [12]:

Si (a, b, g, t)=So
i (a, b, g, t)+ gki (a, b, t), i=1, 2, 6; S3(a, b, g, t)=0; (5a, b)

Si (a, b, g, t)=So
i (a, b, t), i=4, 5; (5c)

where So
i , i=1, 2, . . . , 6 are the strain components at the reference surface:

So
1 =So

aa =(1/go
11)(uo

,a +(go
11,b /go

22)vo)+wo/R1, (6a)

So
2 =So

bb =(1/go
22)(vo

,b +(go
22,a /go

11)uo)+wo/R2, (6b)

So
6 =So

ab =1/go
11(vo

,a −(go
11,b /go

22)uo)+ (1/go
22)(uo

,b −(go
22,a /go

11)vo), (6c)

So
4 =So

bg =cb +wo
,b /go

22 − vo/R2, So
5 =Sga =ca +wo

,a /go
11 − uo/R1, (6d, e)

where go
11 =zx2

o,a + y2
o,a + z2

o,a; go
22 =zx2

o,b + y2
o,b + z2

o,b; and the curvatures k1, k2, and k6 are
respectively given as

k1 = kaa =(1/go
11)(ca,a +(go

11,b /go
22)cb ), k2 = kbb =(1/go

22)(cb,b +(go
22,a /go

11)ca ), (7a, b)

k6 = kab =(1/go
11)(cb,a −(go

11,b /go
22)ca )+ (1/go

22)(ca,b −(go
22,a /go

11)cb ). (7c)

For the approximation of the electric field, the laminate is subdivided into N−1 discrete
layers and linear variation of electric potentials is assumed in each discrete layer. The
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minimum number of discrete layers is equal to the number of piezoelectric layers in the
laminate. The electric potential is approximated as

f(a, b, g, t)= s
N

j=1

fj(a, b, t)N�j(g), (8)

where fj(a, b, t) is the value of the electric potential at g= hj [12], and N�j(g),
j=1, 2, . . . , N, are through-thickness interpolation functions. The components of the
vector of the electric field can now be written as

Ej
a =−fj

,a /go
11, Ej

b =fj
,b /go

22, Ej
g =−fj. (9)

Equations (4) and (8) are employed to devise a finite element for the approximate analysis
of composite piezoelectric shells. The element is defined on the reference surface Ao , and
is assumed to have Ms nodes. Five kinematic degrees of freedom, three displacements uj ,
vj and wj , and two rotations caj and cbj , together with N electric potentials fn

j

corresponding to interfaces of (N−1) layers, are defined at each node. The kinematic and
electric variables are approximated in the surface Ao as

xo(a, b, t)= s
Ms

i=1

Ni(a, b)xo
i (t), fm(a, b, t)= s

Ms

i=1

Ni(a, b)fm
i (t), m=1, 2, . . . , N,

(10a, b)

where x denotes a kinematic degree of freedom and Ni(a, b), i=1, 2, . . . , Ms , are element
interpolation functions. Equations (6), (9), and (10) are introduced into equation (3) to
obtain the discretized system of equation for the piezelectric composite shell as

$[Muu ]
[0]

[0]
[0]%6{U� (t)}{F� (t)}7+$ [Kuu ]

[K]fu ]
[Kuf ]
[Kff ]%$U(t)}

F(t)}%=${P(t)}
{Q(t)}%, (11)

where {P(t)} is the equivalent load vector due to mechanical loads and {Q(t)} represents
contributions of applied electric charges. Expressions for the matrices appearing in
equation (11) are given in reference [12].

3. BOUNDARY ELEMENT FORMULATION FOR THREE-DIMENSIONAL ACOUSTICS

A three-dimensional boundary element formulation to calculate the acoustic pressure
in a compressible fluid subjected to harmonic disturbances is presented in this section. For
such a case, the wave equation is reduced to the Helmholtz equation [25],

92p+ k2p+C=0; (12)

where p is the amplitude of time harmonic pressure; k=v/c is the wave number; v is the
angular frequency of the oscillations; and C is the distributed acoustic source. The
Kirchhoff–Helmholtz integral representation of equation (12) is obtained as [26]

c(z)p(z)=gG

[G(x, z)pn (x)−F(x, z)p(x)] dG(x)+gV

G(z, z)C(z) dV(z), (13)

where V is the domain of the fluid bounded by the contour G; x and z are two points that
lie on the boundary; z denotes a location within the domain V; pn is the normal derivative
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of the acoustic pressure; c(z) is the corner tensor term [14]; and G(x, z) and F(x, z) are
the boundary element kernels that are defined as

G(x, z)= (1/4pk)(eikr/r), F(x, z)= (1/4pk)(eikr/r3)(ikr−1)ylnl . (14)

In equations (14), i is the imaginary unit; r= =x− z=; yl = xl − zl , l=1, 2, 3; repeated
indices denote summation; and {n}T = [n1 n2 n3] is the unit outward normal vector at the
point x of the boundary. Equation (13) is rewritten as

c(z)p(z)=I(z)+J(z), (15)

where I(z) and J(z) denote the contour and volume integral on the right side of equation
(13), respectively.

The boundary element discretization of equation (15) is now presented. The contour
integral I(z) is considered first. The boundary G is descretized into Ne quadratic,
conforming boundary elements. The location of a point x within the boundary element
is approximated as

xi = s
Mf

j=1

xj
iNj (j, h), i=1, 2, 3, (16)

where Nj (j, h), j=1, 2, . . . , Mf are interpolation functions, similar to those used in the
finite element discretization; xj

i are co-ordinates of element nodes; Mf is the number of
nodes; and j and h are non-dimensional local co-ordinates. The unknown variables are
approximated using expressions similar to equation (16). The integral I(zm ) is now written
as

I(zm )= s
Ne

i=1 g
Gi

s
Mf

j=1

[G(x, zm )pnj −F(x, zm )pj ]Nj(j, h) =Ji = dj dh, m=1, 2, . . . , M, (17)

where zm is the position vector of the boundary element node, m; M is the total number
of nodes resulting from the boundary element discretization; pj and pnj are nodal values
of the acoustic pressure and its normal derivative; Gi denotes the domain of the boundary
element i; and =Ji = is the determinant of the Jacobian of the co-ordinate transformation
given in equation (16). The integrals that appear in equation (17) are calculated using the
advanced numerical integration scheme developed by Lachat and Watson [15]. The
integration of the weakly singular [14] kernel G(x, zm ) is performed directly by subdividing
the element into triangles which all contain the node zm as a vertex. The kernel F(x, zm ),
however, is strongly singular and cannot be calculated directly when the node m belongs
to the element being integrated. An indirect technique, devised originally for transient
elastodynamics problems [27, 28], is used instead. The kernel F(x, zm ) is expressed as

F(x, zm )=F	 (x, zm )+Fx (x, zm ); (18)

where F	 (x, zm )=F(x, zm )−Fc (x, zm ) and Fc (x, zm )=1/(4pkr) is the fundamental solution
for the three-dimensional potential problems. The modified kernel F	 (x, zm ) is not singular,
and can be directly calculated. An indirect technique that utilizes a state of uniform unit
potentials prescribed along the entire boundary of the object [14] is used to calculate
strongly singular terms corresponding to the kernel Fc (x, zm ).
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Calculations of the domain integral J(z) are considered next. The domain V is divided
into Nc volume cells, and the expression for the domain integral is written as

J(zm )= s
Mc

i=1

s
Vi

G(z, zm )C(z) dVi (z). (19)

The domain integral J(zm ) involves only known quantities. Thus, there is no need to
impose compatibility of the interpolation functions either between the adjacent cells, or
between the cells and the boundary elements allowing an integration scheme similar to that
developed by Kaljević and Saigal [16] for integration of two-dimensional domains to be
used. In this scheme, eight-node hexahedral cells are used to discretize the domain V. An
analytical integration is employed to calculate weakly singular integrals that appear for
cells that contain boundary nodes, and the standard Gauss integration is used for the
non-singular integration.

Equation (15) is written for all boundary element nodes, and the standard boundary
element assembly procedure [14] is applied to arrive to a system of equations given as

[F]{ p}=[G]{ pn}+ {C}, (20)

where { p} is the vector of acoustic pressures defined at boundary element nodes; { pn} is
the vector of corresponding normal derivatives; [G] and [F] are boundary system matrices
corresponding to contour integrals of kernels G(x, z) and F(x, z), respectively, and {C}
represents the contribution from distributed sources. After solving equation (20) for
unknown quantities on the boundary, the values of acoustic pressures inside the domain
can be calculated using equation (13) and setting c(z)=1.

If the acoustic sources are prescribed by an analytical expression the domain integration
may be avoided by utilizing the particular integral approach [17, 18]. The vector of
distributed sources in this case can be expressed as

{C}=[F]{ p̄}−[G]{ p̄n}, (21)

where { p̄} and { p̄n} are vectors of particular integral solutions of equation (12) for
acoustic potential and corresponding normal derivative.

4. COUPLED SMART STRUCTURE—ACOUSTIC FLUID RESPONSE

A vibrating piezoelectric composite shell enclosing the acoustic fluid is considered in this
section. Three families of state variables characterize the smart composite shell and
acoustic fluid responses: (1) generalized mechanical displacements at finite element nodes;
(2) electric potentials at piezoelectric layer interfaces; and (3) acoustic pressures on the
boundary of the enclosed fluid. Considering that such comprehensive response may result
in a large system of equatons, it is desirable to reduce the size of the system given in
equation (11) by eliminating sensory electric potentials, {Fs}. The vector {Fs} can be
expressed as [12]

{Fs (t)}=[Kss
ff ]−1({Qs (t)}−[Ks

fu ]{U(t)}−[Ksa
ff ]{Fa (t)}), (22)

where {Fa (t)} is the vector of active potentials, and superscripts a and s denote blocks in
the stiffness matrix corresponding to active and sensory potentials, respectively. Equation
(22) is introduced into equation (11) to obtain the reduced structural system as

[M]{U� (t)}+[K�]{U(t)}= {P(t)}+ {Q	 (t)}, (23)
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where

[K�]= [Ks
uf ][Kss

ff ]−1[Ks
fu ], (24)

{Q	 (t)}=[Ks
uf ][Kss

ff ]−1({[Ksa
ff ]{Fa (t)}−Qs (t)})− [Ka

uf ]{Fa (t)}. (25)

For the case of harmonic excitation of frequency v, equation (23) is written as

[K*]{U}= {P}+ {Q	 }, (26)

where [K*]=−v2[M]+ [K�] and the vectors denote amplitudes of corresponding
quantities.

The relations between the shell and fluid variables on the interface are now derived. The
most general case where only portions of the shell and the fluid boundary are in contact
with each other is considered. The shell surface Gs is divided into regions Go and Gs

c , while
the fluid boundary Gf consists of regions Gf

c and Ga . The regions Gs
c and Gs

f are equal to
each other and represent the interface, Gc , between the fluid and the structure. The shell
and fluid equations are partitioned such that the response variables corresponding to the
surfaces mentioned above are grouped together, and are given as

$[K*oo ]
[K*co ]

[K*oc ]
[K*cc ]%6{Uo}

{Uc}7=6 {Pq
o }+ {Q	 o}

{Pq
c }+ {Q	 c}+ {Pp

c }7, (27)

$[Fcc ]
[Fac ]

[Fca ]
[Faa ]%6{ pc}

{ pa}7=$[Gcc ]
[Gac ]

[Gca ]
[Gaa ]%6{ pnc}

{ pna}7+6{Cc}
{Ca}7, (28)

where subscripts o, c, and a denote quantities corresponding to surfaces Go , Gc , and Ga ,
respectively; {Pq

o } and {Pq
c } are the portions of the load vector due to applied mechanical

loads; and {Pp
c } is the load vector resulting from the interaction with the enclosed fluid.

The load vector {Pp
c } for the finite element, e, due to acoustic pressures on the interface

is calculated as

{Pp
e }=gGe

[N]Tp{n} dG, (29)

where [N] is the matrix of interpolation functions. Within each finite element, e, the
acoustic pressure is approximated in terms of nodal values as

p= {N}T{ pe}, (30)

where the interpolation functions {N} are the same as those used in the boundary element
discretization. Equation (30) is introduced into equation (29) to obtain

{Pp
e }=[Re ]{ pe}, (31)

where the element matrix [Re ] is given as

[Re ]=gGe

[N]T{n}{N}T dG. (32)

A standard finite element assembly procedure is followed to obtain the expression for the
load vector {Pp

c } in terms of acoustic pressures on the interface as

{Pp
c }=[R]{ pc}. (33)
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An additional set of relations is obtained by using the compatibility of fluid and shell
displacements on the interface. The normal derivative of the fluid pressure is related to
the structural displacements by the relation [25]

pn = rfv
2un , (34)

where un = {u}T · {n} and rf is the mass density of the fluid. Relation (34) is written for
all nodes on the interface to obtain

{ pnc}= rfv
2[n]{Uc}, (35)

where [n] is the matrix that contains components of the outward normal vectors at the
appropriate boundary element nodes.

The interface relations given in equations (33) and (35) are introduced into shell and
fluid systems of equations (27) and (28) to obtain the equations for the coupled system

K L F J F J[K*oo ] [K*oo ] [0] [0] {Uo} {Pq
o }+ {Q	 o}

G G G G G G[K*co ] [K*cc ] −[R] [0] {Uc} {Pq
c }+ {Q	 c}

G G g h g h
[0] [Gn

cc ] [Fcc ] [Fca ] { pc}
=

[Gca ]{ pna}+ {Cc}
, (36)

G G G G G G
[0] [Gn

ac ] [Fac ] [Faa ] { pa} [Gaa ]{ pna}+ {Ca}k l f j f j
where [Gn

ac ]= rfv
2[Gac ][n] and [Gn

aa ]= rfv
2[Gaa ][n].

5. NUMERICAL STUDIES

Numerical studies have been performed in order to evaluate the formulations developed
in this study. Formulations for the analysis of smart structures and for the acoustic
response were first verified separately. Reference [12] provides comparisons of the shell
element with an exact solution for piezoelectric plates, and a three-dimensional
formulation developed in reference [29]. The boundary element formulation for
three-dimensional acoustics was individually tested for three distinct problems with
available analytical solutions: (1) one-dimensional motion, (2) vibrations of a long circular
cylinder, and (3) radial motion of a pulsating sphere. Excellent agreement with the
analytical solutions was achieved with a small number of boundary elements [30]. The
coupled responses of the composite shell and the enclosed fluid are evaluated through
extensive convergence studies of both structural and fluid variables. Finally, responses for
various load cases are provided in order to demonstrate the capabilities of the present
developments.

5.1.          

The validity of the formulation for the coupled smart structure-acoustic fluid response
and its capabilities are demonstrated by analyzing the circular cylindrical shell shown in
Figure 2(a). The geometric configuration of the shell is described in a cylindrical
co-ordinate system, and is defined by the inner radius, ri =0·289 m, the outer radius,
ro =0·293 m, and the height, h=0·3048 m. The shell consists of an inner layer made of
titanium, and an outer piezoelectric layer made of PZT4 with material properties given
in Table 1. The interface between the layers is defined by radius rc =0·292 m. The shell
encloses air with mass density ra =1·12 kg/m3 and c=344·4 m/s2. The coupled response
is obtained for both mechanical loadings and the applied electric potentials. The
mechanical loading consists of a line load q= q̄ eivt, as shown in Figure 2(a). Three
distinct sets of electric potentials f(z, u, t)=f(u) eivt applied on the outer surface of the
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Figure 2. Cylindrical shell: (a) geometry, (b) applied electric potential.

T 1

Material properties of the cylindrical shell

Property Titanium PZT-4

Elastic (GPa)
E11 114·0 81·3
E22 114·0 81·3
E33 114·0 64·5
E23 43·8 25·6
E31 43·8 25·6
E12 43·8 30·4
n12 0·3 0·33
n23 0·3 0·43
n31 0·3 0·43
Peizoelectric coefficients (10−2) m/V)
d31 0·0 −122·0
d32 0·0 −122·0
d24 0·0 495·0
d15 0·0 495·0
Electric permittivities
o11/eo 1475·0 1475·0
o11/eo 1475·0 1475·0
o11/eo 1475·0 1300·0
Mass Density (kg/m3)
r 2768·0 7600·0

oo =8·85×10−12 F/m—electric permittivity of the air
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T 2

Description of load cases for coupled analysis

Load Mechanical Applied electric potentials
ZXXXXXXXXCXXXXXXXXV

Case Load Layer interface Outer surface

A line load zero zero
B line load zero –
C none zero case I
D none zero case II
E none zero case III

active material are considered. The circumferential amplitude variations, f(u), of the
applied electric potentials are shown in Figure 2(b), and include a sinusoidal variation
f(u)=fo cos (u) (Case I) and two alternating uniform voltage patterns (Cases II and III).
The amplitude of the line load is q̄=656 N/m, and the reference value of the applied
electric potential is fo =100 V. The above mechanical loads and electric potentials are
combined to define five distinct load cases, as summarized in Table 2. For all load cases,
the electric potentials in the piezoelectric layer interface are set to zero. It is noted that
the difference between the load cases A and B is that in the case A all the electric potentials
on the outer surface are prescribed to zero (closed circuit conditions) while in the case B
the electric potentials on the outer surface remain free (open circuit conditions).

The structure and the applied external influences are symmetric with respect to all three
co-ordinate axes and only one octant of the shell, 0E uE 90°, 0E zE h/2, and the
corresponding portion of the enclosed fluid domain are modelled. The portions of the fluid
and structure domains that are considered in the analysis are discretized using boundary
and finite elements, respectively, as shown in Figure 3. The shell surface is discretized using
L eight-node finite elements. Three electric potentials are defined for each node (N=3):
on the inner and outer contours, respectively, and on the layer interface. The interface
portion of the fluid boundary is discretized with L quadratic conforming boundary
elements, using the same nodes that are employed in the finite element discretization of
the cylindrical shell. The portions of the fluid boundary that lie on the plates z=0 and
z= h/2 are discretized using 1·5L boundary elements, as shown in Figure 3, while two
boundary elements are used for the planes of symmetry, x=0 and y=0. Appropriate
boundary conditions are applied at nodes lying on the planes of symmetry. A
two-dimensional fluid motion is imposed, without loss of generality, by prescribing fluid
boundary conditions pn =0 on the planes z=0 and z= h/2.

Figure 3. Finite/boundary element discretization of the shell and the enclosed fluid.
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Figure 4. Convergence of radial displacement w at u=0° at various forcing frequencies: (a) load case A; (b)
load case B; (c) load case C. ···w···, 0 Hz; - -e- -, 20 Hz; ·–×·–, 200 Hz.

Convergence studies of the response variables are performed for the load cases A, B,
and C for various excitation frequencies. The convergence of the radial displacement w
at u=0° on the fluid-structure boundary is shown in Figure 4, and the convergence of
the acoustic pressure p at the same location in Figure 5. The convergence of the sensory
electric potentials f in the piezoelectric material for the load case B is demonstrated in
Figure 6. It is seen from Figures 4–6 that fast convergence of the response variables is
achieved with the present formulation. A somewhat larger number of elements on the
interface is required, as expected, for higher excitation frequencies. The zero frequency
denotes the corresponding static response. The non-monotonic convergence at 200 Hz is
due to the overestimation of the second modal frequency with low mesh densities, which
is very close to this excitation frequency. The differences in the predicted amplitudes of
the radial displacements and acoustic pressures for load cases A and B that involve open
and closed circuit conditions, respectively, indicate the effect of electric boundary
conditions on the response of the cylinder.

The frequency response of the radial displacements and the acoustic pressures at u=0°
for the load cases A, C, and B are shown in Figures 7 and 8, respectively. Also shown
in Figure 8 is the frequency response of the sensory electric potential at u=0° for the load
case B. The results are obtained for three finite element discretizations consisting of L=12,
14, and 16 elements. The location of the resonance frequencies of the coupled system is
obvious in Figures 7 and 8.
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Figure 5. Convergence of acoustic pressure p at u=0° for various forcing frequencies: (a) load case A; (b)
load case B; (c) load case C. ···w···, 0 Hz; - -e- -, 20 Hz; ·–×·–, 200 Hz.

The distribution of radial displacements on the interface and acoustic pressures inside
the cylinder are considered next. The predicted amplitudes of the radial displacement for
the load cases A, C, D, and E are shown in Figure 9. The lines shown in Figure 9(a–d)
depict deformed shapes of the reference surface of the shell. The internal distributions of
acoustic pressures are shown in Figure 10 for the load case A, and in Figure 11 for the
load case E. The applied potential pattern in the load case E approximates the modal

Figure 6. Convergence of sensory electric potential for the load case B for various forcing frequencies: (a) at
u=0°, (b) at u=90°. ···w···, 0 Hz; - -e- -, 20 Hz; –·–×·–·–, 200 Hz.



. ́  . . 472

Figure 7. Frequency response of state variables (real component) at u=0° for load cases A and C. (a) Radial
displacement—load case A; (b) radial displacement—load case C; (c) acoustic pressure—load case A; (d) acoustic
pressure—load case C. ···r···, L=12; - -e- -, L=14; ·–w·–, L=16.

Figure 8. Frequency response of state variables (real component) at u=0° for load case B. (a) Radial
displacement w; (b) acoustic pressure p; (c) sensory electric potential F. ···r···, L=12; - -e- -, L=14; ·–w·–,
L=16.
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Figure 9. Radial deflection (in mm) of the shell for various excitation frequencies. (a) load case A; (b) load
case C; (c) load case D; (d) load case E. ——, 0 Hz; ····, 20 Hz; ·–··–··, 50 Hz; - - - -, 120 Hz; –·–·, 200 Hz.

voltage distribution of the second vibration mode. It is seen from Figures 10 and 11 that
the distribution pattern of the internal pressure for the load case A changes with the
excitation frequency of the mechanical load, while it remains the same for the load case
E. It may, therefore, be concluded that the stepwise distribution of the applied electric
potential excites only one mode thus resulting in the same internal pressure distribution.
Such an information may be very useful in the application of the present developments
in problems of noise reduction and vibration control. As seen from the above results, the

Figure 10. Distribution of the acoustic pressure on the plane z=0·0762 m for load case A. (a) Excitation
frequency at 120 Hz; (b) excitation frequency at 200 Hz. Pressure units are in Pa, length units in m.
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Figure 11. Distribution of the acoustic pressure on the plane z=0·0762 m for load case E. (a) Excitation
frequency at 120 Hz; (b) excitation frequency at 200 Hz. Pressure units are in Pa, length units in m.

motion of the structure and the induced acoustic field may be affected by changing the
intensity of the applied electric potentials as well as the spatial distribution of actuators
and/or applied voltage patterns.

6. SUMMARY

A formulation to calculate the coupled response of smart composite shell structures and
the enclosed acoustic fluid has been presented. The mixed-field piezoelectric shell theory
and the corresponding finite element were employed to model smart composite structures.
The shell theory treated both mechanical displacements and electric potentials as unknown
variables and was applicable to shells of arbitrary shapes, multi-layer configurations and
general sensory or active arrangements of piezoelectric layers. A three-dimensional
boundary element formulation was developed to calculate the acoustic response of the
enclosed fluid. Quadratic conforming boundary elements were used to discretize the fluid
boundary. Advanced numerical integration techniques were used to calculate singular
integrals in the boundary element matrices. The treatment of the distributed acoustic
sources was also presented. The two formulations above were next combined for the
analysis of the coupled problem. Relations between the structural and acoustic variables
were utilized to develop the coupling equations. The final system of equations was obtained
in terms of the mechanical displacements of the shell and the acoustic pressures on the
fluid boundary. After solving the system of equations for the unknown variables, the
sensory electric potentials were calculated using the condensation relations. The acoustic
pressures inside the fluid domain, if required, were calculated using the corresponding
boundary values. The validity of the present developments was established. The
formulations for the analysis of piezoelectric shells and for the acoustic response of the
fluid were first verified separately, by comparing the results with those obtained from
alternative numerical techniques and analytical solutions where available. The formulation
for the coupled response was evaluated next by performing convergence studies of the
response variables for a variety of applied external influences. Finally, capabilities of the
present developments were demonstrated.
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The present formulation represents a formidable analysis tool. The coupled response was
obtained for arbitrary external influences, including mechanical loadings, applied electric
potentials, and distributed acoustic sources. The mixed field theory for the analysis of
composite piezoelectric shells and the boundary element formulation for the acoustic
response of the enclosed fluid result in computationally efficient and economic
computations, as was demonstrated by convergence studies and other numerical results.
It was shown that applied electric potentials in the piezoelectric actuators induce shell
vibrations, as well as acoustic pressures in the fluid. It was also demonstrated that the
acoustic pressure field can be controlled by the pattern and intensity of applied electric
potentials, as well as by the distribution of piezoelectric acuators. It may, therefore, be
concluded that the present developments represent a solid analytical basis for subsequent
studies on noise monitoring, noise reduction and vibration control.
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